Corso di formazione attuariale permanente 1/21
Machine Learning per le Assicurazioni:
Case Studies
 
  Calendario corsi


 Documenti
 
Presentazione,
programma
e scheda
di iscrizione

formato PDF

 Iscrizione online
 

 

 

Martedì 26 gennaio 2021 in diretta web

Machine Learning per le Assicurazioni: Case Studies
Il taglio del corso è pratico: saranno presentati dei casi d'uso, commentato il codice open-source Python ed R degli script, analizzati i risultati e indicati riferimenti per approfondimenti sull’argomento.

Data la vastità degli argomenti trattati non sarà possibile focalizzarsi sui dettagli di specifiche metodologie o sugli aspetti generali dei linguaggi di programmazione utilizzati, per quanto brevi cenni teorici saranno forniti. Una conoscenza almeno base dell'utilizzo dei modelli predittivi nonché di R e/o Phyton è fortemente consigliata per poter fruire adeguatamente dei contenuti del corso. Ai partecipanti saranno rilasciati presentazioni e codice dei relativi esempi. Il corso è da considerarsi come una continuazione del corso Big Data- Data Science del 21 marzo 2018.

Ricordiamo che è possibile iscriversi anche online direttamente da questo sito.
Qualche giorno prima del corso, gli iscritti riceveranno, via mail, un link per il collegamento con una sala virtuale, con possibilità d’interazione con il docente. Il collegamento, non richiede nessuna installazione di software.

Con la partecipazione al corso, che rientra tra le attività preclassificate, come stabilito dalle Linee Guida di attuazione del regolamento sulla Formazione Attuariale Continua, redatto ai sensi dell’art. 7 comma 3 del D.P.R. N. 137/2012, emanate dal Consiglio Nazionale egli Attuari in data 7 maggio 2018, saranno attribuiti 5 (cinque) CFP ai fini FAC (Formazione Attuariale Continua).

Docenti:
Dott. Giorgio Alfredo Spedicato
(Gruppo Unipol)

Programma

Il corso presenterà applicazioni di tecniche di Machine Learning (ML) avanzate in ambito assicurativo, esemplificandone le potenzialità in settori di tradizionale appannaggio attuariale. Gli esempi verteranno su questi temi:

  • Modelli di classificazione binaria: confronto tra GLM classici e approcci ML learning; focus su strumenti per confrontare la performance predittiva. Applicazioni alla modellazione dei riscatti di polizze vita e alla probabilità di occorrenza di sinistri.
  • Modelli di regressione con dati di conteggio e a supporto positivo: confronto tra GLM e ML (boosting); utilizzo di Keras-Tensorflow per la stima di un modello congiunto di frequenza e costo medio congiunto.
  • Spiegare un modello di ML: il pacchetto R DALEX confrontare modelli e “spiegare” le predizioni individuali.
  • Utilizzo di reti neurali Keras-Tensorflow per:
    a) Classificare immagini
    b) Classificazione di documenti

Orario:

Martedì 26 gennaio 2021

09.15 – 09.30 Registrazione
09.30 – 11.00 Lezione
11.00 – 11.15 Intervallo
11.15 – 13.00 Lezione
13.00 – 14.00 Intervallo
14.00 – 15.30 Lezione
15.30 – 15.45 Intervallo
15.45 – 17.15 Lezione

 



Segreteria operativa:
S.I.A. S.r.l. - Viale delle Milizie 1 - 00192 Roma
Tel. – 06/3202922, E-mail: info@sia-attuari.it
Federica Campanini

Numero dei partecipanti:
Il numero massimo di partecipanti è fissato in 70 unità, ammessi secondo l’ordine cronologico di ricevimento della domanda.

Iscrizioni:
La scheda allegata va inviata alla segreteria della S.I.A. s.r.l., Viale delle Milizie 1, 00192 Roma, tramite mail, entro giovedì 21 gennaio 2021.
E' possibile inoltre l'iscrizione online.
L'iscrizione al corso sarà confermata con nostra email.

Quota di iscrizione:
La quota di iscrizione per ogni partecipante è di Euro 450,00 + IVA. La quota dà diritto alla partecipazione ai lavori e al materiale didattico.


Modalità di pagamento:
Il versamento della quota di iscrizione, da effettuarsi successivamente alla nostra conferma, dovrà pervenire entro e non oltre l’inizio del corso, con l’evidenza del corrispondente numero di fattura.
Eventuali rimborsi per impedita partecipazione saranno consentiti nella misura dell’80% se la mancata partecipazione sarà comunicata per iscritto almeno 2 giorni prima dell’inizio del corso.

   


 

web design: Cliccaquì

Machine Learning per le Assicurazioni: Case Studies Machine Learning per le Assicurazioni: Case Studies Machine Learning per le Assicurazioni: Case Studies